Matroids and Hyperplane Arrangements

Christin Bibby, Ian Williams, Dr. Michael Falk

NASA Space Grant Symposium

April 18, 2009

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	×0
●000		00	
		00	
Hyperplane Arrangements			

Let V be \mathbb{R}^{ℓ} or (most of the time) \mathbb{C}^{ℓ} .

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

Image: Image:

Hyperplanes ●○○○	Matroids O O	Orlik- Solomon Algebra	
Hyperplane Arrangements			

Let V be \mathbb{R}^{ℓ} or (most of the time) \mathbb{C}^{ℓ} . A hyperplane H in V is a linear subspace of V with dimension $\ell - 1$. e.g. $H = \ker (\alpha_H : \mathbb{C}^{\ell} \to \mathbb{C})$

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes ●○○○	Matroids ○ ○	Orlik- Solomon Algebra	
Hyperplane Arrangements			

Let V be \mathbb{R}^{ℓ} or (most of the time) \mathbb{C}^{ℓ} . A hyperplane H in V is a linear subspace of V with dimension $\ell - 1$. e.g. $H = ker(\alpha_H : \mathbb{C}^{\ell} \to \mathbb{C})$ A hyperplane arrangement $\mathcal{A} = \{H_1, \ldots, H_n\}$ is a finite set of hyperplanes in V.

Hyperplanes 0●00	Matroids ○ ○	Orlik- Solomon Algebra	
Hyperplane Arrangements			

The D_3 arrangement

Example

$$\alpha_1(x, y, z) = x + z$$

$$\alpha_2(x, y, z) = x - z$$

$$\alpha_3(x, y, z) = y + z$$

$$\alpha_4(x, y, z) = y - z$$

$$\alpha_5(x, y, z) = x + y$$

$$\alpha_6(x, y, z) = x - y$$

The arrangement $\mathcal{A} = \{H_1, \ldots, H_6\}$ in \mathbb{R}^3 given by the hyperplanes $H_i = \{(x, y, z) \mid \alpha_i(x, y, z) = 0\}$. This is the D_3 arrangement.

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ ×
0000		00 00	
Hyperplane Arrangements			

Why study hyperplane arrangements?

▶ Ordered configuration space: $\widetilde{C}(\ell, \mathbb{R}^2) = \{(z_1, ..., z_\ell) \in (\mathbb{R}^2)^\ell \mid z_i \neq z_j, \forall i \neq j\}$

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ א
0000		00 00	
Hyperplane Arrangements			

Why study hyperplane arrangements?

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ א
0000		00 00	
Hyperplane Arrangements			

Why study hyperplane arrangements?

- ► The configuration space is the space of possible positions of ℓ distinct particles in ℝ².

Hyperplanes ○○○●	Matroids 0 0	Orlik- Solomon Algebra	
Hyperplane Arrangements			

From the D_3 arrangement, $\{H_2, H_4, H_6\}$ is a minimal dependent set of hyperplanes.

$$\begin{array}{ll} \alpha_2(x,y,z) = x - z & \alpha_2 \\ \alpha_4(x,y,z) = y - z & \alpha_4 \\ \alpha_6(x,y,z) = x - y & \alpha_6 \end{array} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$



Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	×0
	•	00 00	
Definition of a Matroid	Ŭ.		

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … 釣�?

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	80
	• •	00 00	
Definition of a Matroid			

A matroid \mathcal{M} on E is an ordered pair (E, C) where E (called the ground set of \mathcal{M}) is a finite set and C is a set of subsets (called circuits) of E such that

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes 0000	Matroids ● ○	Orlik- Solomon Algebra	
Definition of a Matroid			

A matroid \mathcal{M} on E is an ordered pair (E, C) where E (called the ground set of \mathcal{M}) is a finite set and C is a set of subsets (called circuits) of E such that

C1 $\emptyset \notin C$

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes 0000	Matroids •	Orlik- Solomon Algebra	
Definition of a Matroid			

A matroid \mathcal{M} on E is an ordered pair (E, C) where E (called the ground set of \mathcal{M}) is a finite set and C is a set of subsets (called circuits) of E such that

C1 $\emptyset \notin C$ C2 If C_1 and C_2 are members of C and $C_1 \subseteq C_2$, then $C_1 = C_2$.

Hyperplanes 0000	Matroids ● ○	Orlik- Solomon Algebra	
Definition of a Matroid			

A matroid \mathcal{M} on E is an ordered pair (E, C) where E (called the ground set of \mathcal{M}) is a finite set and C is a set of subsets (called circuits) of E such that

C1 $\emptyset \notin C$ C2 If C_1 and C_2 are members of C and $C_1 \subseteq C_2$, then $C_1 = C_2$. C3 If C_1 and C_2 are distinct members of C and $e \in C_1 \cap C_2$, then there is a member C_3 of C such that $C_3 \subseteq (C_1 \cup C_2) - e$.

Hyperplanes 0000	Matroids ● ○	Orlik- Solomon Algebra oo oo	
Definition of a Matroid			

A matroid \mathcal{M} on E is an ordered pair (E, C) where E (called the ground set of \mathcal{M}) is a finite set and C is a set of subsets (called circuits) of E such that

C1
$$\emptyset \notin C$$

C2 If C_1 and C_2 are members of C and $C_1 \subseteq C_2$, then $C_1 = C_2$.
C3 If C_1 and C_2 are distinct members of C and $e \in C_1 \cap C_2$, then
there is a member C_3 of C such that $C_3 \subseteq (C_1 \cup C_2) - e$.

A subset of E is defined to be dependent if and only if it contains a circuit.

Hyperplanes	Matroids	Orlik- Solomon Algebra	×0
		00	
Matroids of Arrangements			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

NASA Space Grant Symposium

Hyperplanes	Matroids	Orlik- Solomon Algebra	
	0 •	00	
Matroids of Arrangements			

The dependence of hyperplanes in an arrangement can be represented by a matroid. The matroid \mathcal{M} is drawn such that the collinear points of \mathcal{M} correspond to the dependence of hyperplanes in the arrangement.

Christin Bibby, Ian Williams, Dr. Michael Falk

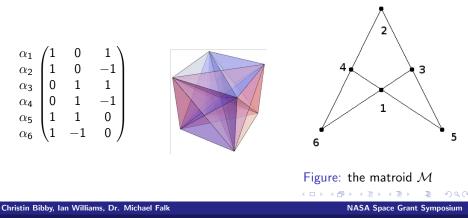
Hyperplanes	Matroids	Orlik- Solomon Algebra	
	0 •	00	
Matroids of Arrangements			

The dependence of hyperplanes in an arrangement can be represented by a matroid. The matroid \mathcal{M} is drawn such that the collinear points of \mathcal{M} correspond to the dependence of hyperplanes in the arrangement.

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	×c
	•	00 00	
Matroids of Arrangements			

The dependence of hyperplanes in an arrangement can be represented by a matroid. The matroid \mathcal{M} is drawn such that the collinear points of \mathcal{M} correspond to the dependence of hyperplanes in the arrangement.



・ロト・日本・ キャー モー うくの

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Definition

 $A(\mathcal{A})$ the Orlik-Solomon Algebra of \mathcal{A} is the algebra of differential forms generated by 1 and $\{\underbrace{\frac{d\alpha_i}{\alpha_i}}_{\alpha_i} \mid 1 \leq i \leq n\}.$

Definition

 $A(\mathcal{A})$ the Orlik-Solomon Algebra of \mathcal{A} is the algebra of differential forms generated by 1 and $\{\underbrace{\frac{d\alpha_i}{\alpha_i}}_{\alpha_i} \mid 1 \leq i \leq n\}.$

Hyperplanes 0000	Matroids 0 0	Orlik- Solomon Algebra ●○ ○○	
The Orlik-Solomon Algebra			

Definition

 $A(\mathcal{A})$ the Orlik-Solomon Algebra of \mathcal{A} is the algebra of differential forms generated by 1 and $\{\underbrace{\frac{d\alpha_i}{\alpha_i}}_{e_i} \mid 1 \leq i \leq n\}$.

Example $\alpha_2(x, y, z) = x - z$ $e_2 = \frac{d(x-z)}{x-z} = \frac{dx}{x-z} - \frac{dz}{x-z}$

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	
The Orlik-Solomon Algebra			

$$\blacktriangleright A = A^0 \oplus A^1 \oplus \cdots \oplus A^n$$

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra ○● ○○	
The Orlik-Solomon Algebra			

$$\blacktriangleright A = A^0 \oplus A^1 \oplus \cdots \oplus A^n$$

•
$$A^p$$
 =span of *p*-fold products of e_i 's

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

3

・ロト ・ 日 ・ ・ 目 ト ・

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra ○● ○○	
The Orlik-Solomon Algebra			

$$\blacktriangleright A = A^0 \oplus A^1 \oplus \cdots \oplus A^n$$

note $e_i e_j = -e_j e_i$ and $e_i e_i = 0$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目: の々で

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra ○● ○○	
The Orlik-Solomon Algebra			

$$\blacktriangleright A = A^0 \oplus A^1 \oplus \cdots \oplus A^n$$

note $e_i e_j = -e_j e_i$ and $e_i e_i = 0$

Theorem For any dependent subset of $\mathcal{A}, \{e_{i_1}, \ldots, e_{i_p}\}$,

$$\sum_{k=1}^{p} (-1)^{k-1} (e_{i_1} \dots \hat{e}_{i_k} \dots e_{i_p}) = 0 \text{ in } A, \text{ where the } \hat{e}_{i_k} \text{ element}$$
 is omitted from the product.

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra ○● ○○	
The Orlik-Solomon Algebra			

$$\blacktriangleright A = A^0 \oplus A^1 \oplus \cdots \oplus A^n$$

• A^p =span of *p*-fold products of e_i 's

note $e_i e_j = -e_j e_i$ and $e_i e_i = 0$

Theorem For any dependent subset of $\mathcal{A}, \{e_{i_1}, \ldots, e_{i_p}\},\$

 $\sum_{k=1}^{p} (-1)^{k-1} (e_{i_1} \dots \hat{e}_{i_k} \dots e_{i_p}) = 0 \text{ in } A, \text{ where the } \hat{e}_{i_k} \text{ element}$ is omitted from the product.

The OS algebra A(A) is the cohomology algebra of the complement C^ℓ − U_{H∈A} H of the arrangement A, a topological invariant of the complement of A.

Hyperplanes	Matroids	Orlik- Solomon Algebra	×0
		0	
Resonance Varieties			

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

NASA Space Grant Symposium

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ א
0000		00	
		0	
Resonance Varieties			

The degree-one resonance variety

 $\mathcal{R}^1(\mathcal{A}) = \{a \in \mathcal{A}^1 \mid \exists b \in \mathcal{A}^1 \text{ where } ab = 0 \text{ and } b \text{ is not a scalar multiple of } a\}.$

Christin Bibby, Ian Williams, Dr. Michael Falk

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ א
		○ ○	
Resonance Varieties			

The degree-one resonance variety

 $\mathcal{R}^1(\mathcal{A}) = \{a \in \mathcal{A}^1 \mid \exists b \in \mathcal{A}^1 \text{ where } ab = 0 \text{ and } b \text{ is not a scalar multiple of } a\}.$

• $\mathcal{R}^1(\mathcal{A})$ is the union of linear subspaces.

Hyperplanes	Matroids	Orlik- Solomon Algebra	₀ א
		○ ○	
Resonance Varieties			

The degree-one resonance variety

 $\mathcal{R}^1(\mathcal{A}) = \{a \in \mathcal{A}^1 \mid \exists b \in \mathcal{A}^1 \text{ where } ab = 0 \text{ and } b \text{ is not a scalar multiple of } a\}.$

- $\mathcal{R}^1(\mathcal{A})$ is the union of linear subspaces.
- The resonance variety is an invariant of the OS algebra, and the degree-1 component of resonance is an invariant of the fundamental group of the complement of the arrangement.

Hyperplanes	Matroids 0 0	Orlik- Solomon Algebra ○○ ○●	
Resonance Varieties			

Again, the D_3 arrangement illustrates this structure.

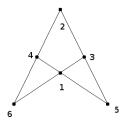


Figure: $\mathcal{M}(\mathcal{A})$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

NASA Space Grant Symposium

Hyperplanes 0000	Matroids 0 0	Orlik- Solomon Algebra ○ ○●	
Resonance Varieties			

Again, the D_3 arrangement illustrates this structure.

► The degree-one resonance variety of the D₃ arrangement is the union of five 2-dimensional linear subspaces of C.

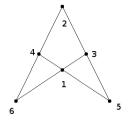


Figure: $\mathcal{M}(\mathcal{A})$

Christin Bibby, Ian Williams, Dr. Michael Falk

Matroids and Hyperplane Arrangements

NASA Space Grant Symposium

Hyperplanes 0000	Matroids o o	Orlik- Solomon Algebra ○ ○●	
Resonance Varieties			

Again, the D_3 arrangement illustrates this structure.

- ► The degree-one resonance variety of the D₃ arrangement is the union of five 2-dimensional linear subspaces of C.
- ► The 3-point circuits are the lines in *M*: {1,3,6}, {1,4,5}, {2,3,5}, and {2,4,6}.

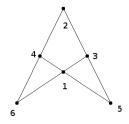


Figure: $\mathcal{M}(\mathcal{A})$

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra ○○ ○●	
Resonance Varieties			

Again, the D_3 arrangement illustrates this structure.

- The degree-one resonance variety of the D₃ arrangement is the union of five 2-dimensional linear subspaces of C.
- ► The 3-point circuits are the lines in *M*: {1,3,6}, {1,4,5}, {2,3,5}, and {2,4,6}.
- ► Each of these yields a 2-dimensional component of R¹(M).
 e.g. for 136 the subspace is spanned by e₁ e₃ and e₃ e₆.
 (e₁ e₃)(e₃ e₆) = e₁₃ e₁₆ + e₃₆ = 0.

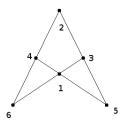


Figure: $\mathcal{M}(\mathcal{A})$

Hyperplanes 0000	Matroids ○ ○	Orlik- Solomon Algebra 00 00	×₀ ●
Fin			

- Arrangements of Hyperplanes by Peter Orlik and Hiroaki Terao
- Matroid Theory by James Oxley
- Determining Resonance Varieties of Hyperplane Arrangements by Andres Perez
- ▶ The brain of Dr. Michael Falk.