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Hyperplane Arrangements

Definition

Let V be R` or (most of the time) C` .

A hyperplane H in V is a linear subspace of V with
dimension `− 1.
e.g. H = ker (αH : C` → C)

A hyperplane arrangement A = {H1, . . .Hn} is a finite set
of hyperplanes in V .
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Hyperplane Arrangements

The D3 arrangement

Example

α1(x , y , z) = x + z

α2(x , y , z) = x − z

α3(x , y , z) = y + z

α4(x , y , z) = y − z

α5(x , y , z) = x + y

α6(x , y , z) = x − y

The arrangement A = {H1, . . . ,H6} in R3 given by the hyperplanes
Hi = {(x , y , z) | αi (x , y , z) = 0}. This is the D3 arrangement.
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Hyperplane Arrangements

Why study hyperplane arrangements?

I Ordered configuration space:
C̃(`,R2) = {(z1, . . . , z`) ∈ (R2)` | zi 6= zj , ∀i 6= j}

I C̃(`,R2) = C` −
⋃

1≤i<j≤`

Hij where Hij is the hyperplane

xi − xj = 0 in C`.

I The configuration space is the space of possible positions of `
distinct particles in R2.
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Hyperplane Arrangements

Example

From the D3 arrangement, {H2,H4,H6} is a minimal dependent
set of hyperplanes.

α2(x , y , z) = x − z

α4(x , y , z) = y − z

α6(x , y , z) = x − y

α2

α4

α6

1 0 −1
0 1 −1
1 −1 0
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Definition of a Matroid

Definition
A matroid M on E is an ordered pair (E , C) where E (called the
ground set of M) is a finite set and C is a set of subsets (called
circuits) of E such that

C1 ∅ /∈ C
C2 If C1 and C2 are members of C and C1 ⊆ C2, then C1 = C2.
C3 If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then

there is a member C3 of C such that C3 ⊆ (C1 ∪ C2)− e.

A subset of E is defined to be dependent if and only if it
contains a circuit.
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Matroids of Arrangements

The dependence of hyperplanes in an arrangement can be
represented by a matroid. The matroid M is drawn such that
the collinear points of M correspond to the dependence of
hyperplanes in the arrangement.

α1

α2

α3

α4

α5

α6


1 0 1
1 0 −1
0 1 1
0 1 −1
1 1 0
1 −1 0



Figure: the matroid M
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The Orlik-Solomon Algebra

Let A = {H1, . . . ,Hn} be an arrangement of hyperplanes, and
αi be a defining form for Hi .

Definition
A(A) the Orlik-Solomon Algebra of A is the algebra of differential

forms generated by 1 and {dαi

αi︸︷︷︸
ei

| 1 ≤ i ≤ n}.

Example

α2(x , y , z) = x − z e2 = d(x−z)
x−z = dx

x−z −
dz

x−z
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The Orlik-Solomon Algebra

I A = A0 ⊕ A1 ⊕ · · · ⊕ An

I Ap =span of p-fold products of ei ’s

note eiej = −ejei and eiei = 0

Theorem For any dependent subset of A, {ei1 , . . . , eip},
p∑

k=1

(−1)k−1(ei1 . . . êik . . . eip ) = 0 in A, where the êik element

is omitted from the product.

I The OS algebra A(A) is the cohomology algebra of the
complement C` −

⋃
H∈AH of the arrangement A, a

topological invariant of the complement of A.
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Resonance Varieties

I Definition
The degree-one resonance variety
R1(A) = {a ∈ A1 | ∃b ∈ A1 where ab = 0 and b is not a scalar
multiple of a}.

I R1(A) is the union of linear subspaces.

I The resonance variety is an invariant of the OS algebra, and
the degree-1 component of resonance is an invariant of the
fundamental group of the complement of the arrangement.
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Resonance Varieties

Example

Again, the D3 arrangement illustrates this structure.

I The degree-one resonance variety of
the D3 arrangement is the union of
five 2-dimensional linear subspaces of
C.

I The 3-point circuits are the lines in
M : {1, 3, 6}, {1, 4, 5}, {2, 3, 5}, and
{2, 4, 6}.

I Each of these yields a 2-dimensional
component of R1(M).
e.g. for 136 the subspace is spanned
by e1 − e3 and e3 − e6.
(e1−e3)(e3−e6) = e13−e16 +e36 = 0.

Figure: M(A)
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Fin

Sources

I Arrangements of Hyperplanes by Peter Orlik and Hiroaki
Terao

I Matroid Theory by James Oxley

I Determining Resonance Varieties of Hyperplane Arrangements
by Andres Perez

I The brain of Dr. Michael Falk.
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